Tunable, resonant heterodyne interferometer for neutral atomic hydrogen measurements in tokamak plasmas*

J.J. Moschella, R.C. Hazelton, M.D. Keitz, and C.C. Klepper

HY-Tech Research Corporation, Radford, VA 24141

Plasma Facing Components Meeting Princeton, NJ May 9-11, 2005

^{*}This work supported by the Department of Energy through a SBIR Phase I Contract No. DE-FG02-04ER83974

Outline

- I. Explain the physical basis for the diagnostic
- II. Describe the apparatus
- III. Example of measurements using pulsed plasmas
- IV. Concluding remarks

Program overview

- A two wavelength interferometer has been developed to measure the n=2 state densities of H, D, or T in a plasma. This is intended for use in studying tokamak edge physics.
- One of the wavelengths is resonant with the 2p-3d transition (ie. H_{α} , D_{α} , T_{α}) and is adjusted using a tunable diode laser.
- The other wavelength measures off-resonant effects, ie. index variations due to free electrons, vibrations etc.
- By varying the laser wavelength during the discharge, information on the line shape and center can also be determined.
- All quantities are determined from the measured phase shift, therefore no intensity calibration is required.
- All measurements are integrated along the laser beam line-of-sight with a transverse spatial resolution of less than 1 mm.

Spectral line interferometry

- Near an optically allowed transition in a given species, the refractive index is significantly enhanced. The enhancement depends on the:
 - absorption oscillator strength
 - line shape
 - laser wavelength or frequency
 - population density of the species in the lower state
- Analysis from Measures, *Appl. Opt.* **9**(3) (1970)

$$\Delta \phi = \frac{NDf}{\beta} P(u, \alpha)$$

$$\beta = \left(\frac{\omega_o}{c}\right) \left(\frac{2kT}{M}\right)^{1/2}$$
 (Doppler width)

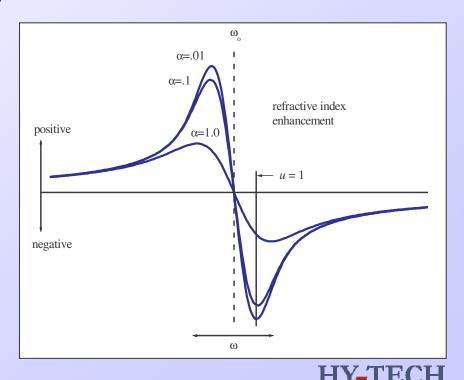
$$P(u,\alpha) = r_o c(\pi)^{1/2} \int_{-\infty}^{\infty} dy \frac{(y-u)e^{-y^2}}{(y-u)^2 + \alpha^2}$$

$$u = \frac{(\omega - \omega_o)}{\beta}$$
 (frequency normalized to β)

$$\alpha = \frac{\gamma}{2\beta}$$
 (γ is the collisional width)

Spectral line interferometry

- Near an optically allowed transition in a given species, the refractive index is significantly enhanced. The enhancement depends on the:
 - absorption oscillator strength
 - line shape
 - laser wavelength or frequency
 - population density of the species in the lower state
- Analysis from Measures, *Appl. Opt.* **9**(3) (1970)


$$\Delta \phi = \frac{NDf}{\beta} P(u, \alpha)$$

$$\beta = \left(\frac{\omega_o}{c}\right) \left(\frac{2kT}{M}\right)^{1/2} \quad \text{(Doppler width)}$$

$$P(u, \alpha) = r_o c(\pi)^{1/2} \int_{-\infty}^{\infty} dy \frac{(y - u)e^{-y^2}}{(y - u)^2 + \alpha^2}$$

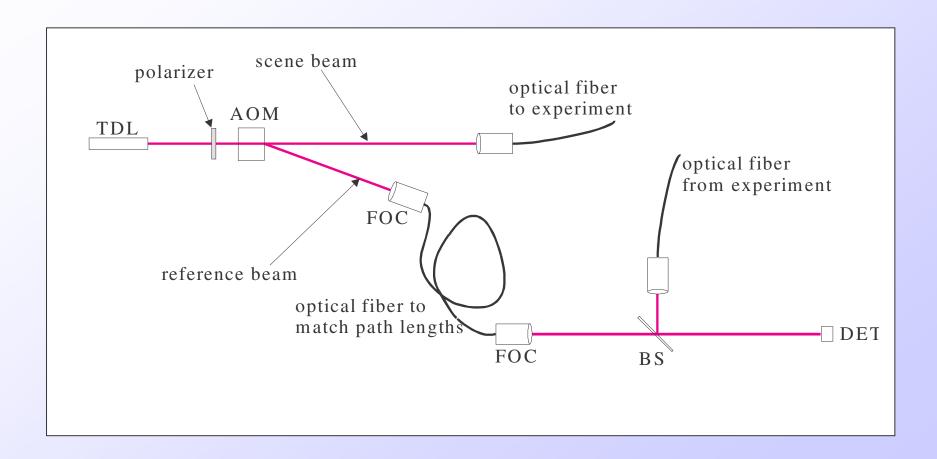
$$u = \frac{(\omega - \omega_o)}{\beta} \quad \text{(frequency normalized to}\beta\text{)}$$

$$\alpha = \frac{\gamma}{2\beta} \quad (\gamma \text{ is the collisional width)}$$

A non-resonant laser interferometer is required to isolate the resonant effects

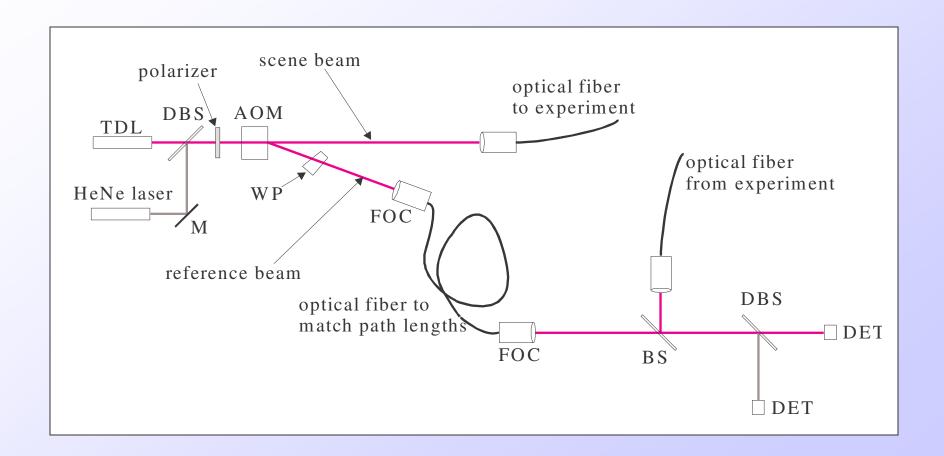
```
\lambda_R \Leftarrow free electrons + vibrations + desired species state density \lambda_N \Leftarrow free electrons + vibrations
```

• For this to function optimally λ_R and λ_N must have common paths so environmental factors are the same for both interferometers.

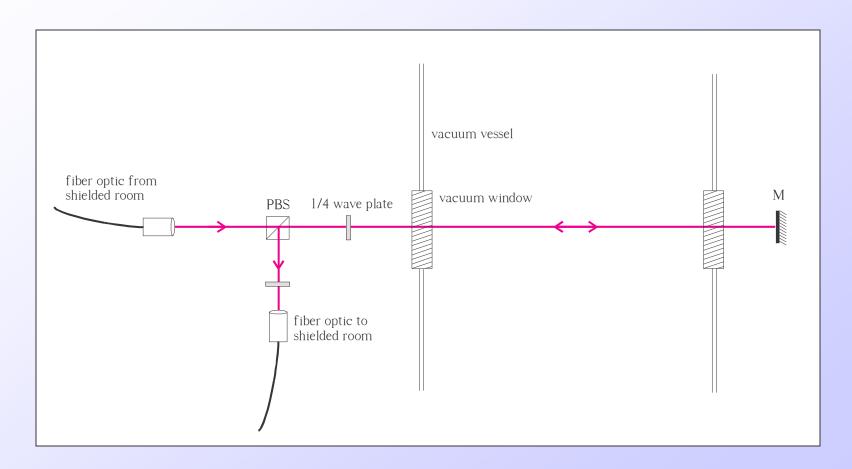

Interferometer design

- λ_R from a low power (10 mW) tunable diode laser 6500-6600 Å (~10 k\$) can be used for H_α , D_α , T_α , or CII (6578, 6583)
- λ_N from a HeNe laser at 6320 Å
- Both interferometers use a heterodyne detection system where an AOM is used to shift the reference beams by 40 MHz.
- $\lambda_R \& \lambda_N$ are combined and fed into a single mode optical fiber.
- Fibers are used to bring the beams to and from the experimental apparatus.
- $\lambda_R \& \lambda_N$ are split and sent to individual detectors.

Apparatus schematic (I)


• All components are located in an electrically shielded room isolated from vibrations

Apparatus schematic (I)


• All components are located in an electrically shielded room isolated from vibrations

Apparatus schematic (II)

• Laboratory configuration used during the Phase I testing

Minimum estimated sensitivities for phase detection measurements with a heterodyne interferometer.

T(eV)	n _{min} [n=2](cm ⁻²)	n _{min} [n=1](cm ⁻²)*	
10	$9.0x10^9$	2.2×10^{12}	
25	1.4×10^{10}	3.8×10^{12}	
50	2.0×10^{10}	$5.3x10^{12}$	

^{*}Based on calculations of Johnson and Hinnon, L.C. Johnson and E. Hinnon,

J. Quant. Spectrosc. Radiat. Transfer, 13, 333 (1973).

Comparison with alternative techniques $(H_{\alpha} \text{ emission and } L_{\alpha} \text{ LIF})$

State Density

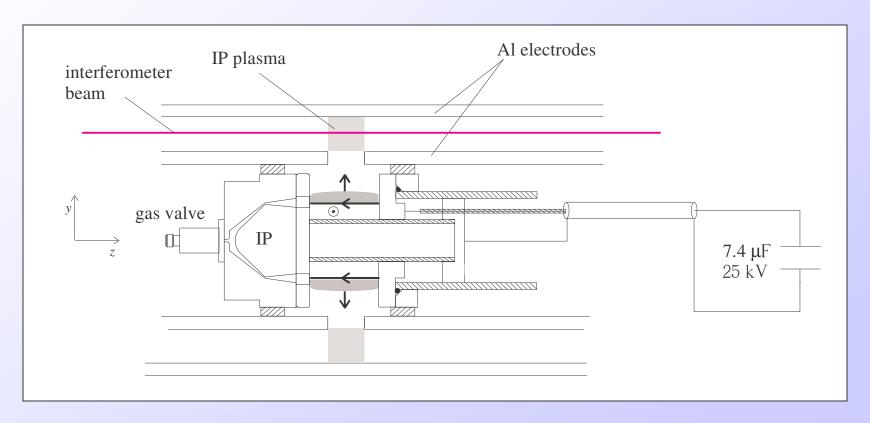
- Resonant phase measures n=2 state density (no calibration).
- Emission measures n=3 state density (absolutely calibrated).
- LIF (1220 Å) measures n=1 state density.

• Spatial resolution

- Resonant phase has sub-millimeter resolution in transverse direction while integrating alone the line-of-sight.
- Emission has low spatial resolution and requires multiple sensors and complex inversion techniques to improve resolution.
- LIF provides local information.

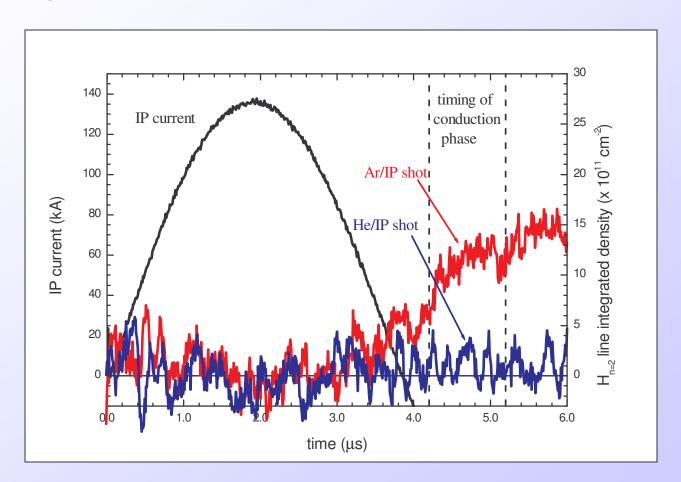
Spectral resolution

- Resonant phase $\ge 3x10^{-5}$ Å defined by laser linewidth.
- LIF typically $\ge 5 \times 10^{-3} \text{ Å}$
- Emission typically $\ge 5 \times 10^{-2}$ Å defined by spectrometer.

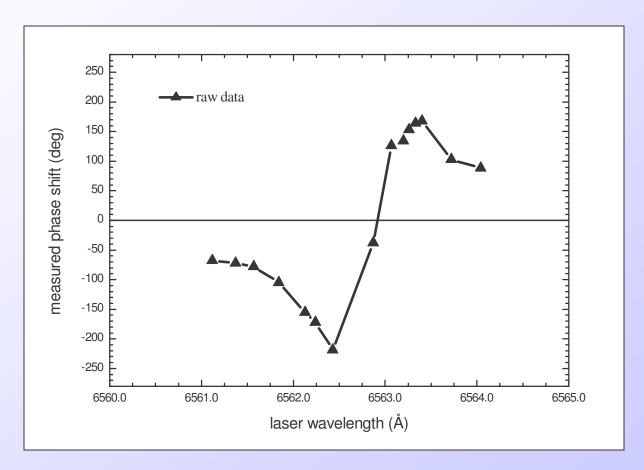

Temporal resolution

- Resonant phase: 2 ms with full spectral scan, 25 ns (40 MHz) at fixed λ .
- LIF limited to 25 Hz laser pulses ~ 40 ms
- Emission depends on the detector.

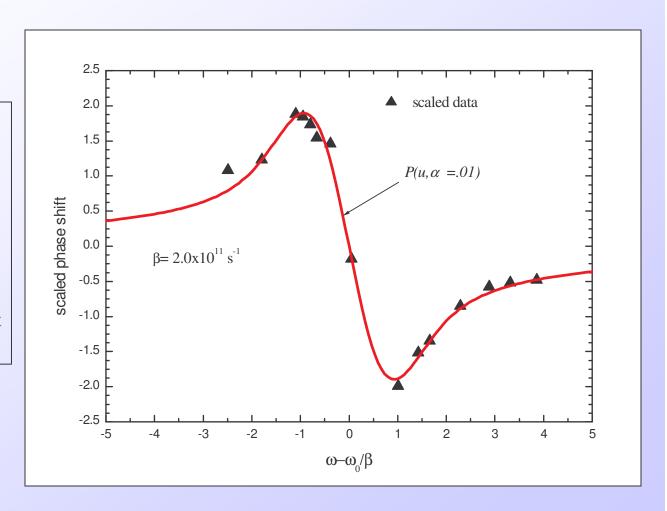
Phase I experimental test-bed

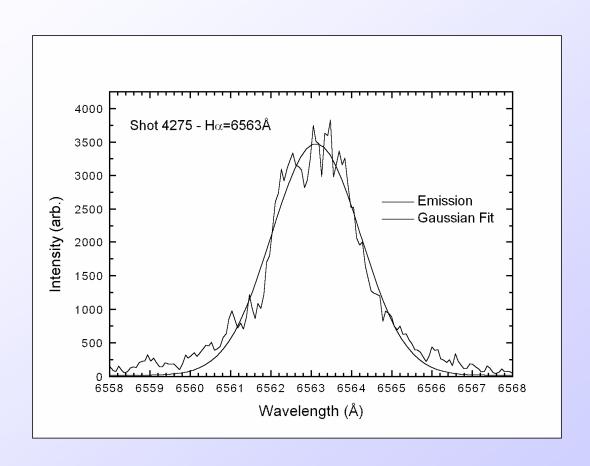

- Use the gas driven, inverse pinch (IP) plasma source (inverse z-pinch geometry).
- IP source was mounted inside a coaxial plasma opening switch.
- Plasma duration ~ 1 μ s, density ~ 10^{15} cm⁻³, T_e ~ 1 eV, 1-5 cm axial length.

Results of the IP surface interaction


• Motivated by observation of low impurity concentrations in H/POS shots and high concentrations in Ar/POS shots.

The behavior of the $P(u, \omega)$ function was verified


- The IP was used with H₂ gas in the POS configuration
- 12 shots were taken at different laser wavelengths


Details of the line were determined from the data

- β was determined from the peaks in the phase assuming α was small.
- wavelength was converted to $(\omega \omega_o)/\beta$
- $P(u, \alpha)$ for $\alpha = .01$ fit the data reasonably well
- This result implies a line that is ~ 1 Å wide (T= 2.3 eV).

The deduced line profile compares well to that previously measured by emission

Status of project

- Phase I program has been completed and Phase II proposal submitted
- The Phase II includes a cooperative arrangement with GA
- The Phase II program calls for expanding the diagnostic to a muti-chord system.

Concluding remarks

- The Phase I program has resulted in a working diagnostic.
- The diagnostic was used to measure the H (n=2) state density using a pulsed plasma device.
- The line width was also determined from the analysis and agrees with a previous emission measurement under the same conditions.

